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Abstrnct. We formulate the method of shape invariance of supersymmetric potentials in 
amannerthatis suitable for application to spherically symmetric problems in the momentum 
representation. Three examples are discussed: the isotropic non-relativistic oscillator, a 
relativistic oscillator, and the Coulomb problem. In these shape invariance is used to 
determine eigenvalues and normalized momentum-space eigenfunctions for bound states. 

1. Introduction 

In recent years there has been considerable interest in the use of supersymmetry [l]  
and shape invariance [2] in quantum mechanics [3-91. The concept of shape invariance 
is a sufficient (but not a necessary) condition for the construction of exactly solvable 
potentials [3,8], and it has been applied to many of the solvable systems in quantum 
mechanics [2-61. Use of shape invariance enables one to determine eigenvalues and 
eigenfunctions [2-61: the latter application is essentially a generalization ofthe standard 
harmonic oscillator method of raising and lowering operators. 

In particular, for the two-body problem with spherically symmetric interparticle 
potential it has been shown that the three-dimensional non-relativistic isotropic har- 
monic oscillator and the Coulomb problem are shape invariant [3-5,9]. In these studies 
the method of shape invariance is applied in the coordinate representation, and 
consequently it is the coordinate-space eigenfunctions that are determined. 

It is natural to enquire whether shape invariance can also be applied to spherically 
symmetric potentials in the momentum representation. The purpose of this paper is 
to show that for certain problems such an application can be made. In section 2 we 
give a brief review of shape invariance as it is used for spherically symmetric problems 
in <he coordinate representation. in section 3 we formuiate the method of shape 
invariance in a manner that is suitable for application to certain spherically symmetric 
problems in the momentum representation. Then three examples are discussed: the 
isotropic non-relativistic oscillator and a relativistic (Dirac) oscillator (section 4), and 
the Coulomb problem (section 5 ) .  For these problems we use the formulation of section 
3 to determine energy eigenvalues and normalized momentum-space eigenfunctions 
for bound siates. 

2. Shape invariance in the coordinate representation 12-6,9] 

Let r and p denote the position and momentum operators of a particle of mass m. Let 
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p ,  denote the usual radial momentum operator 

0 L de Lunge and A Welter 

1 1 
p r = ; ( P . p + p .  ;)=;(r .p-ih) (1) 

where r = (1. r)1'2. The operator p, satisfies the commutation relation (see [9, section 
5.21 and [lo]) 

In the coordinate representation p, can he expressed as the first-order differential 
operator 

ih d p = ---r. 
' r d r  

Consider the operators 

(3) 

Here a. is a set of parameters and W (the superpotential) is to he determined: it is a 
real function of r and a. (see below). In terms of A, one can COnStNct the supersym- 
metric partner Hamiltonians 

(5) 
1 
2m H + = A + ( a ~ ) A d u d  =-d+ VAT, ad 

where 

In the coordinate representation A, and H,, respectively, are first- and second-order 
differential operators. The partner potentials V, are said to be shape invariant if [2] 

V+(r, ao)= v- ( r , ad+R(uA (7) 

where the remainder R is independent of r and aI is some function of ao: a, = F(ao) .  
Suppose H- possesses a discrete spectrum and let (LN(r, a,,) denote a normalized 

coordinate-space eigenfunction with eigenvalue EN : 

H-(LN(r, %)=EN(LN(r, ad ( N = O ,  1,.  . . ). (8) 

A+(.o)(Lo(r, ao) =O. (9) 

For our purposes it is sufficient to  suppose that A+ annihilates (Lo (see e.g. [ l l]) :  

From (5), (8) and (9) it follows that Eo=O. 

given in terms of the remainder R by the simple formula 
If the shape invariance condition (7) is satisfied then the eigenvalues of H- are 

N 

E N =  R(%) ( N  = 1,2, .  . . ) (10) 

A-(ao)+N(r. a d = e i a G + N + l ( r .  ad (11) 

r.1 

where a, = F(a,-,). Also, the operator A_(ao) performs the transformation 
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( N  = 0,1, . . . ),where 0 is a real constant. The eigenfunctions of H _  can all be generated 
from JlO(r, U N ) :  

$N(r,an)=e-INe[ * = I  II (EN--Es- t ) ]  A- (ao)A_(a , )  . .  . A - ( a N - , ) + n ( r , a N )  
N -112 

(12) 

for N =  1,2,. . . .The inclusion of the phase e in (12) is necessary in certain problems, 

is omitted [2-61; however, this factor is necessary if we wish to obtain normalized 
eigenfunctions. Equation (12) is a generalization of the standard operator method for 
generating the energy eigenfunctions of a one-dimensional harmonic oscillator from 
its ground state. 

The above theory applies also to a spherically symmetric two-body problem if we 
identify r = rI - r,, 

ncch as those invn!ving nirac spinors [U:.  Often th< energy-depende"! f2rtor in (U!  

and m = m,m,/(m,  + m2), the reduced mass. For such a problem in an angular momen- 
tum basis, H- is (to within a constant term) the radial Hamiltonian 

where V ( r )  is the interparticle potential and I (=O, 1,. . . )  is the orbital angular 
momentum quantum number. Two important problems to which the method of shape 
invariance applies are the istropic harmonic oscillator potential 

v(r)=fmw'r' (14) 

and the attractive Coulomb potential 

V ( r ) = - k l r  

( k  a positive constant). For the oscillator the superpotential is 

and for the Coulomb problem it is 

In both cases the parameters a,  are [3-6,91 

a , = l + s  (s=O, 1,. . . ). (18) 

The use of shape invariance to determine the energy eigenvalues and coordinate-space 
eigenfunctions of these two systems has been discussed in the literature [3-691. 

3. Shape invariance in the momentum representation 

In this section we present the method of shape invariance in a form that is suitable 
for application to the momentum representation of spherically symmetric potentials 
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in an angular momentum basis. The formulation is similar to that in the previous 
section but with some differences. 

0 L de Lange and A Welter 

Instead of r and p ,  we introduce operators p = ( p .  p ) ' I2  and 
1 1 

rp =- (6. r +  r .  6) =- ( p .  r + ih)  
2 P 

which satisfy the commutation relation (see [9, p 2121 and [13]) 

In the momentum representation rp can be expressed as the first-order differential 
operator 

ih d 
p dpp' 

=-- 

Next we consider operators 

B ~ P ,  Po) = *irpf(f(p) + W(P, Po) 
where Po is a set of parameters and W and f are determined below (sections 4 and 
5 ) .  (Tne ordering uf rp and f adopied in (22) is for iarer c0nvenience.j we  then 
construct operators which are second order in rp, namely 

A,= B,(Po)BT(Po) = [*JYP)I'+ V ~ P ,  Po) (23) 
where 

The partner 'potentials' v* are shape invariant if 

V + ( P , P o ) =  v-(P,PI)+R(Pl) ( 2 5 )  
where R is independent of p and PI = G(Po). 

Suppose A- possesses a discrete spectrum and consider the eigenvalue equation 

A - $ N ( P , P O ) = A N $ N ( P ,  P o )  (N=O,  1,. . . ) (26) 
where &N is a normalized momentum-space eigenfunction. By analogy with (9) we 
suppose that 

B+(Po)$o(P, P o )  = 0. (27) 
,ne,, io = 0. 

If the shape invariance condition (25) is satisfied then the eigenvalues and 
momentum-space eigenfunctions of A- are given by formulae which are similar to 
(10)-(12): 

A N =  1 R ( A )  ( N =  I , & .  . . ) (10') 

B - ( P 0 ) $ d ~ ,  P J  = e ' " G & + d p ,  Po) ( N = O ,  1, .. . )  ( 1 1 ' )  

n-.. 

N 

s = 1  

N -112 

$N(P, Po) = e-'" [ n ( A N  - L A ]  B-(Po)B-(Pd..  . B-(PN-I)$o(P.  PN) 

for N = 1,2,. . . . Here p, = G(P,-I) and q5 is a real constant. 

(12') 
r - 1  
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The discussion so far has been formal, and we now give three examples to which 
the results (lW)-(lZ’) can be applied, namely the isotropic non-relativistic oscillator, 
a relativistic (Dirac) oscillator, and the Coulomb problem in an angular momentum 
basis. 

4. Oscillators in an angular momentum basis 

We start with a radial Hamiltonian for the isotropic non-relativistic oscillator expressed 
in a form which is quadratic in rp, namely (see [13] and [9, p 2131) 

(28) 
1 

H - - mo’r; + v(p) 
‘ - 2  

where 

V ( p ) = -  1 mo2h21(l+ l),+-p2. 1 1  
2 P 2m 

Comparing (28) and (231, we take f=&o. ‘Potentials’ of the shape (29) can be 
generated from a ‘superpotential’ 

substituting (30) in (24) we see that if Po = I then 
v q p ,  P o )  = V ( p ) -  ho(1+$).  

Also, if 

p , = r + s  (32) 
then v* satisfy the shape invariance condition (25)  with constant remainder 

R = Zho. (33) 

A- = H, - ho ( I +;). (34) 

In (23) let v- be given by (31): comparing the result with (28) we see that 

From (10’) and (33) we have A N  = 2 N h o ,  and hence for the eigenvalues of H, we 
obtain the familiar result EN = ( 2 N  + I+;)ho, where N = 0, 1, . . . is the radial quantum 
number. 

With W given by (30) and r,, by (211, the normalized solution to (27) is 

where P o = -  and n ! ! =  n ( n  - 2 ) .  . . 2  ( n  even), = n ( n  - 2 ) .  . . 1 ( n  odd). The nor- 
malized momentum-space eigenfunctions for N = 1.2,. . . can be obtained by substitut- 
ing (35), with Po ‘replaced by PN, in (12’). The first few of these are found to be 
particular cases of 
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where the confluent hypergeometric function ,F, is a polynomial of order N in p ’ / p i .  
The identification (36) can be extended to all non-negative integers N: we use (36) in 
(1  1’) to obtain 

0 L de Lunge and A Welter 

(U = p 2 / p i ) ,  which is a standard recurrence relation [14, p 507, entry 13.4.141. 
We remark that shape invariance can also be applied to a relativistic oscillator 

known as the Dirac oscillator [15,16]. This oscillator is described by a Dirac equation 
in which the interaction of a particle of rest mass m with an extemal potential is 
introduced by the (non-minimal) substitution p+p-imwpr, where o is a constant 
and p is a Dirac matrix [15, 161. Consequently the Dirac equation is linear in both p 
and r. (There has been considerable interest in this oscillator, both for its algebraic 
properties [15-171 and for its possible application to QCD [18,19].) If the spinor for 
the Dirac oscillator is written 

then it can be shown that in an angular momentum basis the upper and lower elements 
of Y satisfy the eigenvalue equations [17] 

+ k * l )  $*. 
E2-m2c4 
2mc2hw 2 

x*+ = Ro ( 
Here 

1 1 2 2  %=-p2+- mw r 
2m 2 

(37) 

and k =  (-l)’+’-+(j+;) is the Dirac quantum number. Because X is the same as the 
Hamiltonian for an isotropic non-relativistic oscillator, it is clear that shape invariance 
can also be applied to the Dirac oscillator. The calculations of the energy eigenvalue 
E and the coordinate- and momentum-space eigenfunctions are similar to those 
discussed above for the non-relativistic oscillator and will not be repeated here: the 
results are the same as those obtained by other algebraic methods (see [17] where the 
coordinate- and momentum-space eigenfunctions and the phase relationships between 
the upper and lower elements of those eigenfunctions are given). 

5. The Coulomb problem io an angular momentum basis 

Our starting point is the radial Hylleraas equation for the Coulomb problem (see [131 
and [9, p 2151) 

where p o =  m k / h  and k is the constant in (15) .  We consider bound states (E <O) and 
define 

U =p/d=%iZ r. =GZiE rp. (40) 
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In terms of these (39) can be written 

f iJ(u)  = E & U )  

where 

Si,= -r .(u2+l) +V(u)  [I: l2 
2P; 

e = ---2/(/+ 1). mE 

(41) 

The rest of the analysis is similar to that in the previous section for the oscillator. 
In applying the formulae in section 3 we replace p and rp with U and r.. Comparing 
(42) and (23) we takef=(u2+l ) /h .  With 

W[u, p*)  = - [ps  + l ) ( u  - U P )  (45) 

p,=/+s (46) 

(47) 

R(p0)=81+4= 8p0+4. (48) 

and 

in (24) and (25) we find that 

iqU, p 0 )  = V(+2(1+ 1)(1+2) 
and that V* satisfy the shape invariance condition (25) with remainder 

From (IO'), (46) and (48) we obtain 
N 

S-1 
A,.,= (8p,+4)=4N2+81N+8N. 

In (23) let e be given by (47). Then 
A- = R,-Z(/+ l)(l+Z). 

From (44), (49) and (50) we have 

2Pi 4 N 2 + 8 1 N + 8 N =  ---2l(1+ 1)-2(1+1)(1+2) mE 
which yields the Bohr formula 

E = -p;/2m(N+ I+ 1)2 
where N = 0, 1, . . . is the radial quantum number. 

With %'given by (45) and rp by (21), the normalized solution to (27) is 

By substituting (52), with Po replaced by pN, in (12') we generate the normalized 
momentum-space eigenfunctions for N = 1; 2;. . . . It is straightforward though tedious 
to show that the first few of these are particular cases of 

UP, 

(u2+ 1)@0+2 
x 2F,( -N, 2&,+ 2 + N; P o + $ ;  ( u2+ I)-') (53) 
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where U is given by (40) and (51). and the hypergeometric function 2F, is a polynomial 
of order N in (u2+1)-'. The validity of (53) for all non-negative integers N can be 
proved by using (53) in (11'). With x =  (u2+1)-' this yields 

0 L de Lange and A Welter 

1-2x+ 

= 2Fl(- N -  1,2&+3 + N, Po+$ X) 

which is a standard recurrence relation (see [14, p 557, entry 15.2.91). 
In conclusion we remark that the class of problems to which shape invariance can 

be applied is, of course, larger for the coordinate representation than it is for the 
momentum representation. In particular, if one considers just s states then the cen- 
trifugal term in (13) is zero and there are additional potentials such as the Morse, 
Rosen-Morse, Poschl-Teller, and Eckart potentials which can be treated by shape 
invariance in the coordinate representation [3-5]. We have not considered such prob- 
lems here because even fors  states it is not clear how to treat them by shape invariance 
in the momentum representation. 
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